Research gives tin a boost

2019-08-06T12:57:35+00:00 August 6th, 2019|News|

Tin mining projects in the DRC and Namibia will benefit from new research conducted by an engineering company in Australia, writes Syl Kacapyr.

The development of next-generation rechargeable batteries that store more energy and last longer has been stifled by an electrochemical challenge. Australian engineering company Cornell engineers has come up with a simple, but clever solution to the problem.

Tin operations in Namibia and the DRC will get a boost from new research in Australia. Image credit: Leon Louw

Tin operations in Namibia and the DRC will get a boost from new research in Australia. Image credit: Leon Louw

Lithium-ion batteries, like those used in cellphones and electric vehicles, are limited in their electric-charge capacity because of their graphite anodes. Researchers have sought anodes made from alkali metals such as lithium and sodium because they allow for greater capacity, but alkali metals are highly reactive with traditional battery electrolytes. This can lead to the formation of dendrites – pointy metallic structures that make the battery susceptible to a shorter lifetime and potentially dangerous short-circuiting.

Tin as an interface

A team of engineers working in the lab of Lynden Archer, professor of chemical and biomolecular engineering and director of the Cornell Energy Systems Institute, has demonstrated a cost-effective way to stabilise lithium and sodium anodes using tin as a protective interface between the anode and the battery’s electrolytes.

The research is detailed in the paper ‘Fast ion transport at solid-solid interfaces in hybrid battery anodes’ published in Nature Energy in March this year. By dropping tin into a battery’s carbonate-based electrolyte, the research team found that an artificial interface instantly forms on the alkali-metal anode, creating a nanometer-thick barrier that protects the anode like a shield while keeping it electrochemically active.

Cryo-microscopy performed in the lab of Lena Kourkoutis, assistant professor of applied and engineering physics, revealed that the technique produced dendrite-free batteries.

Zhengyuan Tu, a doctoral student who led the research, said the interface offers several advantages beyond simply stabilising the battery.

“The target was to find a facile process to not only protect the pristine anodes, but to also be able to store additional energy,” says Tu. “Tin and other elements have long been exciting candidates for energy storage by readily forming alloys with lithium, so this led us to the concept that a tin interface on lithium would not only offer protection, but added electrochemical activity.”